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A theoretical approach to the description of the Soret effect in binary nonpolar liquids is proposed. The
temperature gradient of the partial pressure is determined as the driving force of thermal diffusion. The
hard-sphere fluid is chosen as a reference system and an explicit relation for the Soret coefficient is found. Two
additive contributions owing to steric repulsions and attractive interactions form the so-called chemical con-
tribution to ST �C. Debuschewitz and W. Köhler, Phys. Rev. Lett. 87, 055901 �2001��. The parameters of
interparticle interactions are defined with the help of the solvation theory. In particular, the van der Waals
constant of cross interactions is expressed via the excess volume of mixture. The proposed theory is applied to
the benzene-cyclohexane system. A reasonable agreement of theoretical and experimental results is revealed
for the Soret coefficient and its temperature dependence.
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I. INTRODUCTION

The phenomenon of separation of substances in a binary
mixture under the influence of an inhomogeneous tempera-
ture field has been known for more than a hundred years and
is called thermal diffusion or the Soret effect �1,2�. A tem-
perature gradient induces a diffusive mass flow of compo-
nent 1,

jT = − �DTw�1 − w� � T , �1�

where � denotes the mass density, DT the thermal diffusion
coefficient, and w the concentration of component 1 in
weight fractions �3�. In the stationary state, the flow is bal-
anced by the diffusion mass flow jD=−�D�w owing to the
concentration gradient. Here D is the collective diffusion co-
efficient. The efficiency of separation of substances in the
stationary state can be judged by the ratio ST=DT /D, which
is known as the Soret coefficient.

The thermal diffusion is observed in an enormous number
of molecular systems such as gas and simple liquid mixtures,
electrolytes, etc. In the last 15 years the thermal diffusion in
complex fluids such as polymer solutions �4–6�, colloidal
dispersions �7–9�, and magnetic fluids �10,11� has become
the focus of experimental investigations. The result of these
works is an accurate determination of the Soret coefficient
ST.

The brightest manifestation of the Soret effect is related to
convective mixing. A crucial influence of thermal diffusion
on convection has been established in many systems, differ-
ing by their compounds and scales, such as the water-
methanol mixtures �12,13�, the colloidal suspensions of silica
in water �14–16�, the DNA solutions �17,18�, the ocean’s salt
fingers �19�, and the Earth’s mantle �20�. It is worth noting
that the thermal diffusion coefficient ST used in these studies
was a phenomenological parameter or measured variable.
This is due to the absence of an adequate physical picture of

thermal diffusion in liquids. The difficulties of theoretical
description of the Soret effect are universally recognized and
connected directly with the statistical mechanics problems of
accounting for the interparticle interactions in the binary
nonequilibrium system �5,21�. Recent investigations of the
thermophoresis in micellar and protein solutions �7,8� and in
ionic and surfacted colloids �22–25� revealed a strong sensi-
tivity of the phenomenon to the electrostatic and solvation
effects. Variety of interparticle interactions in complex fluids
impedes the theoretical consideration so that it is very diffi-
cult and even impossible to extract the leading mechanism of
the thermal diffusion and its main trend.

The aim of this work is to establish the source of the Soret
effect. As the physical system, we study the nonpolar mo-
lecular mixtures where the interparticle effects are not so
manifold as in other liquids such as electrolytes or that which
molecules possess the permanent dipolar moments.

From the very beginning we underline the principal dis-
tinction between the molecular mixtures and the colloidal or
polymer solutions. In the latter systems, there is a giant dif-
ference in size of solute particles �colloids or polymer coils�
and the solvent molecules. This allows to use the hydrody-
namic approach considering the liquid solvent as a continu-
ous medium �7,8,21–25�. In contrast to the polymer solutions
and colloids, molecules of components of molecular mix-
tures are comparable in size. The usage of the hydrodynamic
approach to these systems becomes impossible.

The paper is organized as follows. In Sec. II the driving
force of usual diffusion is considered and the difficulties of
generalization of the result to the case of thermal diffusion
are clarified. The main statements of the Bearman-Kirkwood
approach are discussed in Sec. III. It is argued that the ther-
modiffusional driving force is a sum of equilibrium and non-
equilibrium terms and the former is proportional to the gra-
dient of the partial pressure. The required modification of the
original Bearman-Kirkwood relation for the driving force is
done. In Sec. IV three alternative general relations for the
Soret coefficient are given. The ways of determination of
partial pressure and compressibility factor of liquid mixture
are considered within the framework of perturbation theory
in Sec. V. The solvation theory is used in Sec. VI to relate the
van der Waals �vdW� constant of cross interactions with the
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volume change on mixing the components. The chemical
contribution to the Soret effect is discussed in Sec. VII. It is
established that the Soret coefficient proves to be a result of
balance of repulsive and attractive forces in the liquid mix-
ture. In Sec. VIII the proposed theory is applied to the
benzene-cyclohexane system. A reasonable agreement of the-
oretical and experimental results is revealed for the Soret
coefficient and its temperature dependence. The results of the
paper are summarized and discussed in Sec. IX.

II. DRIVING FORCE OF DIFFUSION

When we consider a particle movement we seek the cause
generating this movement. Mechanically, we try to find some
force responsible for the movement. The identification of
such a force in the Soret problem is a formidable task
�21,24�. To clarify this point let us remind the reader the
more simple and related problem of usual diffusion solved
by Einstein in his classical paper �26�. So, let us consider the
Brownian grains suspended in the liquid. Let us assume that
at some point in time the one-particle field U�z� �for ex-
ample, gravity� switches on and it acts on the particles and
leads to their sedimentation. When the transient processes
are completed the system achieves its equilibrium state with
uniform distribution of temperature and chemical potential
and simultaneously with nonuniform distribution of grain
concentration n�z� along the axis z. The diffusion flux owing
to the gradient of concentration is balanced by the opposite
flux initiating by the one-particle regular force Freg=−�U.
Following Einstein and Batchelor �27�, we imagine that each
particle undergoes the influence of two compensating
forces—the regular force Freg and the driving �thermody-
namic� force of diffusion, FD=−Freg. The explicit form of FD
is obvious from the condition of chemical equilibrium of
grains in the external potential U:

�field = � + U = const, �2�

where �field and � are the chemical potential of grains in
one-particle field and in the field absence, respectively. Then
the closed form for the driving force FD of diffusion is

FD = − �� . �3�

The relation concludes the problem of determining the driv-
ing force of diffusion �26,27�. It asserts that the driving force
of diffusion is fully determined by the equilibrium properties
of the system. Of course, this remarkable result does not
mean that the diffusion itself is an equilibrium phenomenon.
Indeed, according to the general theory of the irreversible
processes �3�, the diffusion velocity vD of particles

vD = bFD �4�

is proportional to the driving force FD and the particle mo-
bility b, which is kinetic in nature property. Therefore, the
significance of result �3� is due to fact that it establishes �i�
the explicit form of the driving force of diffusion and �ii� its
relation to the equilibrium thermodynamics.

The situation with thermal diffusion is much more com-
plicated. The point is that instead of the conditions of ther-

mal �T=const� and chemical equilibrium �2� now we have
only the significantly weaker condition of mechanical equi-
librium p=const, where p is the pressure in the system. Thus,
the mentioned elegant treatment fails and we cannot deter-
mine the driving force of thermal diffusion FT in such a
compact and explicit form as thermodynamic force of diffu-
sion FD in Eq. �3�. However the problem of determination of
the driving force of thermal diffusion has a solution at least
in its general form. The most surprising thing is that this
formal solution has been found as early as 50 years ago by
Bearman and Kirkwood in Ref. �28�. Their work was signifi-
cantly ahead of its time and now it is absolutely forgotten.
We consider the main conclusions of the Bearman-Kirkwood
theory in Sec. III.

III. BEARMAN-KIRKWOOD APPROACH
TO THE PROBLEM

Let us first introduce the specific notation used below. We
consider a two-component liquid mixture. Let m� and n� be
the molecule mass and number density of component �, re-
spectively. The potential U���r� of interaction of molecules
of sort � and � is assumed to be central.

The important point of the Bearman-Kirkwood approach
is the concept of the partial pressure p� of component �. In
equilibrium the partial pressure is determined by the relation
�28�

p� = n�kBT −
2�n�

3 �
�=1

2

n�� r3U��� �r�g���r�dr , �5�

where kB is Boltzmann constant, the prime denotes the de-
rivative over r, and g���r� is the equilibrium pair correlation
function. The quantity �5� might be considered as the pres-
sure exerted on the wall by the particles of one sort if the
particles of second sort are suddenly stopped. Obviously, the
sum of both partial pressures is just the equilibrium pressure
in the system

p = p1 + p2. �6�

Now we are ready to formulate the basic result of the
statistical mechanical theory �28�. According to Bearman and
Kirkwood the general form of the thermodiffusional driving
force FT

��� acting on the particles of sort � is the sum of
equilibrium Feq

��� and nonequilibrium Fnoneq
��� terms:

FT
��� = Feq

��� + Fnoneq
��� . �7�

The word “equilibrium” means that the term Feq
��� is deter-

mined only by the equilibrium properties of the system. The
term can be written in closed form as �28�

Feq
��� = −

1

n�
� �p�

�T
�

p,w
� T . �8�

Thus the equilibrium part of the driving force is proportional
to the gradient of the partial pressure taken at fixed values of
the pressure �the condition of mechanical equilibrium� and
weight fraction of components �the condition of absence of
usual diffusion in the system�. We note that in the original
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work of Bearman and Kirkwood the relation for Feq
��� is given

erroneously �see Eq. �5.6� in Ref. �28��, namely, the deriva-
tive over temperature is taken at constant values of p and the
number density n� of second component of mixture. There
are a number of ways to prove the fallacy of the result. The
explicit way is critical reproduction of the awkward calcula-
tions of Bearman and Kirkwood. However simpler general
arguments exist. Indeed, describing the diffusive mass trans-
port in a binary liquid mixture the relevant conjugate ther-
modynamic variables are the pressure, temperature, and mass
fraction of one of components �3�. In contrast to our expres-
sion �8� the Bearman-Kirkwood formula does not satisfy this
property. The additional argument of correctness of Eq. �8�
will be given in Sec. IV.

Let us return to the analysis of the equilibrium part of the
driving force Feq

���. If we take into account the condition of
mechanical equilibrium p= p1+ p2=const, we find the rela-
tion between the thermodiffusional driving forces acting on
the particles of both sorts

n1Feq
�1� + n2Feq

�2� = 0 . �9�

The physical meaning of this expression is simple. It means
that the full force acting on the ensemble of particles is zero.
In other words, the center of mass of the system is at rest and
the components of the mixture take part into their relative
motion.

Thus, the general form of the equilibrium part of the driv-
ing force of thermal diffusion is known: it is a universal,
closed, and explicit one. At the same time, there is no defi-
nite prescription for the nonequilibrium part Fnoneq

��� . The term
depends on a number of details of the system, for example,
what kind of mixture do we consider—gas or liquid, what
are the characteristic time scales and so on. In short, the term
should be provided by the consecutive kinetic theory. This is
a sophisticated problem on its own. Because of the nonuni-
versal character of the nonequilibrium part Fnoneq

��� , its inves-
tigation seems to be premature before studying the contribu-
tion of the equilibrium term Feq

���. This is why we omit the
nonequilibrium term on the whole and consider only the
equilibrium contribution to the driving force. �We expect the
dominant role of the last quantity also because of analogy of
the problem with the considered case of usual diffusion �see
Sec. II��. As we will see below, this simplified approach
leads to a surprisingly well description of the Soret effect. It
enables an understanding of the basic mechanisms of the
phenomenon and describing qualitatively and sometimes
quantitatively the abundance of data on the Soret coefficient
ST. In general, the significance of the nonequilibrium omitted
term could be judged by a posteriori comparison of the re-
sults with the experiment. As we will see, the nonequilibrium
term proves to be of secondary importance for the case of
benzene-cyclohexane mixtures considered in Sec. VIII.

Finalizing the formulation of our approach to the prob-
lem, we make an assumption supplementary to that men-
tioned above. We limit ourselves to the treatment of the di-
luted mixture only. The component 1 is supposed to be a
low-concentrated one and subsequently called the solute. The
high-concentrated component 2 forms the solvent of binary
mixture. The special case of diluted mixtures allows us to

use below all the power of modern solvation theory in our
study of the problem. Since the component 1 is chosen, one
can define the main aim of the paper. It is a determination of
the Soret coefficient of nonpolar solute dissolved in the sea
of nonpolar solvent.

IV. SORET COEFFICIENT: GENERAL RELATIONS

Let us derive the general relation for the Soret coefficient.
As long as the concentration of solute is negligible, the sol-
vent could be considered immovable. The solute particles
experience the action of thermodiffusional driving force F1
and move via solvent with the velocity v1=bF1, where the
particle mobility b is connected with the diffusion coefficient
by the Einstein relation D=bkBT valid for the diluted solu-
tions �27�. Taking into account the definition of the density �
of mixture and the weight fraction w of solute

� = n1m1 + n2m2, w = n1m1/� , �10�

we find the thermodiffusional mass flow

jT = n1m1v1 = �wDF1/kBT . �11�

The comparison with Eqs. �1� and �8� leads to the general
result for the Soret coefficient:

ST =
1

n1kBT
� �p1

�T
�

p,w→0
. �12�

We use first the relation for a particular mixture of two
ideal gases. The partial pressure of component 1 is p1
=n1kBT=xp, where x=n1 / �n1+n2� is the mole fraction of
solute. Since the conditions w=const and x=const are
equivalent, it gives a zero value for the Soret coefficient,
ST=0. Physically, the result is clear. Indeed, in the ideal mix-
ture, the gas molecules do not “see” each other and thus
cannot be separated. This is a direct consequence of our for-
mula �8�. We note that usage of the erroneous expression by
Bearman and Kirkwood would result in a nonzero value of
ST. This is just the additional argument of correctness of Eq.
�8� we mentioned in Sec. III.

In the case of liquid mixtures, the elegant general result is
a practically useless one. The point is that the partial pressure
entering in Eq. �12� is not an experimentally determined
quantity. Therefore we have to define it theoretically. This
will be the subject of following investigation.

Summarizing the section we indicate two other ways to
perform Eq. �12�, which will be used later. First, we define
the compressibility factor Z of pure liquid as the ratio of
pressure to its ideal gas value, Z= p /nkBT. Generalizing now
the relation for the case of mixture, one can write the partial
pressure p1 in the form

p1 = n1kBTZ12, �13�

where the quantity Z12 can be called the compressibility fac-
tor of solute in solvent. Obviously, in our case of negligible
solute concentration, Z12 does not depend on n1. The condi-
tion w=const gives the relation between the gradients of
number density of solute and solvent particles, �n1 /n1
=�n2 /n2. Substitution of two last expressions into Eq. �12�
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allows to perform the Soret coefficient without any memory
about the concentration of solute

ST =
1

n2T
	 ��n2TZ12�

�T



p

. �14�

Finally, we use the relation for pure solvent p= p2=n2kBTZ2,
where Z2 is the compressibility factor of solvent. It is clear
that derivative of the expression with additional condition
p=const is zero. Subtracting this value from Eq. �14� leads to
the third and practically useful representation of ST,

ST =
1

n2T
	 ��n2T�Z12 − Z2��

�T



p

. �15�

The expressions �12�, �14�, and �15� are three alternative
forms for ST which obviously follow on from the formalism
of the equilibrium thermodiffusional driving force. In Sec. V
we give the ways of determining the partial pressure and
compressibility factor of liquid mixture.

V. PERTURBATION THEORY FOR PURE
LIQUIDS AND MIXTURES

We start with considering the case of pure substances.
Molecules of nonpolar liquids interact via the dispersion
forces, which are traditionally written in the form of the
Lennard-Jones �LJ� potential

U�r� = 4���r0/r�12 − �r0/r�6� . �16�

Two parameters determine the potential: the characteristic
length r0 and energy �. To describe the LJ system the refer-
ence hard-sphere �HS� fluid modeling the intermolecular re-
pulsions is usually chosen. The attractions are treated as per-
turbation within the framework of the Barker-Henderson
�29� or the Andersen-Weeks-Chandler �30� formalisms. Both
theories prescribe a peculiar way of determination of the HS
diameter d. As noted in Ref. �31�, the LJ characteristic size
of molecules is only effective length of the molecular repul-
sive core and depends on the way of definition. Thus in
practice, instead of determination of the HS diameter d via
the previously unknown LJ size r0 the opposite procedure is
used: d is obtained first from some thermodynamic liquid
properties and then the LJ parameter r0 is calculated as an
effective length of soft repulsions �31�. The same strategy
might be applied also when determining the energy param-
eter � from some auxiliary quantity connected simply with
the experimental data.

We perform the mentioned procedure using the general-
ized vdW equation of state �32,33�

Z  p/nkBT = ZHS��� − �a , �17�

i.e., the compressibility factor of liquid is a sum of the com-
pressibility factor ZHS of the reference HS system and the
attraction forces term, �=�nd3 /6 is a packing fraction. The
HS diameter d and van der Waals constant a are assumed to
be temperature dependent, d=d�T� and a=a�T�. The latter
quantity is written often in the form a=avdW /kBT �31–34�.
Since however avdW depends on temperature, it is useful to
include the thermal energy into definition of new dimension-

less constant a. The compressibility factor of hard spheres is
well described by the Carnahan-Starling relation �35�

ZHS��� =
1 + � + �2 − �3

�1 − ��3 . �18�

Similarly to Eq. �16�, relation �17� has two parameters: the
characteristic length d and energy a. However in contrast to
r0 and �, they both can be easily expressed via experimen-
tally observable variables—the molar volume Vm and the iso-
thermal compressibility �T=−�1 /V���V /�p�T �31,33�:

a = �ZHS��� − Zexp�/�, Zexp = pVm/RT , �19�

�T
−1 = nkBT��ZHS� ��� − ZHS��� + 2Zexp� . �20�

Here R is a gas constant and the experimental value Zexp of
compressibility factor is taken at normal condition p=1 atm.
As our immediate aim is a determination of d=d�T� and a
=a�T� it would be strongly desirable to have the detailed data
on temperature dependencies of the molar volume Vm�T� and
the isothermal compressibility �T�T�. Fortunately, these data
are currently available �36�. Cerdeirina et al. �36� measured
with very high accuracy the number of characteristics �den-
sity, isobaric and isothermal compressibilities, thermal ex-
pansivity, and others� of many nonpolar liquids. It is impor-
tant that the results are given within the wide temperature
interval 288–333 K with the step 1 K.

An example of the typical temperature behavior of both
quantities is shown in Fig. 1 for the case of cyclohexane. As
seen, the parameters d�T� and a�T� are weakly nonlinear de-
creasing functions. Additionally, we found also the packing
fraction ��T� and temperature derivative of all the functions,
d��T�, a��T�, and ���T�.

Further, we generalize the equation to the case of mix-
tures. The starting point here is expression �5� for partial
pressure. After the transformation to the reference system,
the repulsive part of the interaction potential derivative is
written as �30�

280 290 300 310 320 330

5.6
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5.66

5.68

22

24

26

28

30

←

→

T(K)

d ( )A° a

FIG. 1. �Color online� The hard-sphere diameter d and the van
der Waals constant a of cyclohexane as a function of temperature.
The values of d are given in angstroms.
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U12� �r� → − kBT��r − d12� , �21�

where ��x� is the delta-function and d12 is the solute-solvent
HS diameter. Following Ref. �31�, we choose it in the addi-
tive form d12= �d1+d2� /2 so as it has a meaning of contact
value of distance between hard spheres with diameters d1
and d2. Substituting Eq. �21� into Eq. �5� and integrating
gives the HS contribution to the partial pressure. The attrac-
tive part of p1 apparently follows from Eq. �5� �37�. Com-
bining both contributions we finally have

p1 = n1kBT	1 +
2�

3
n2d12

3 g12
HS�d12� −

�

6
n2d12

3 a12
 . �22�

Here g12
HS�d12� is the contact value of the HS solute-solvent

radial distribution function and a12=a12�T� is the vdW con-
stant of solute-solvent attraction. Thus for the compressibil-
ity factor Z12 �see Eq. �13�� of solute one finds

Z12 = 1 + 4�	3g12
HS�d12� − �	3a12, �23�

where �=�n2d2
3 /6 is the packing fraction of pure solvent

and 	= �1+d1 /d2� /2. At first glance, since the vdW constant
a12�T� of cross interaction is not determined yet, the
temperature-dependent parameter 	3 could be combined with
a12. However the following physical argument prohibits this
formal procedure. The point is that according to the simpli-
fied considerations �34,37� the vdW constant a12 of solute-
solvent attraction is proportional just to the product �12d12

3 of
the Lennard-Jones cross-interaction parameter and the
solute-solvent HS diameter. In its turn, �12 is often approxi-
mated by the combining rule in the Lorentz-Berthelot form
�12→ ��1�2�1/2. The rule is very useful as an effective way of
qualitative �and sometimes quantitative� consideration of the
problem. We can use successfully the combining rule also for
the vdW constant a12 only avoiding its merge with 	3. This is
why the attractive part of the interaction has been done in the
form of Eqs. �22� and �23�.

So, the partial pressure p1 and the compressibility factor
Z12 of solute are expressed via two parameters—the contact
value g12

HS�d12� of the correlation function and the vdW con-
stant a12 of solute-solvent interactions. The former is well
approximated by the analytical formula from the Boublik-
Mansoori-Carnahan-Starling-Leland equation of state for HS
mixtures �38,39�

g12
HS�d12� =

1

1 − �
+

3�

�1 − ��2





 + 1
+

2�2

�1 − ��3� 



 + 1
�2

,

�24�

where 
=d1 /d2. We note that in special case of equal sized
solute and solvent, 
=1, the repulsive contribution Z12

HS=1
+4�	3g12

HS�d12� to the compressibility factor reduces it to
pure liquid value �18�. As for determination of the vdW con-
stant a12 an additional investigation is required. We consider
the issue in Sec. VI.

VI. CROSS-INTERACTION CONSTANT
AND THE SOLVATION THEORY

We have seen above how the vdW constant a is related to
the properties of pure liquid. It is quite clear that in order to

define the vdW constant a12 of solute-solvent interactions we
should use some property characterizing liquid mixture. The
appropriate candidate for the property is the excess of vol-
ume VE which is a difference of volume of mixture and its
additive value. To establish the explicit link between a12 and
VE we remind the readers the basic steps of the solvation
theory developed in the papers by Pierotti �37� and Ben-
Amotz and co-workers �40�.

First we make the notation used more precise. As before,
the components 1 and 2 of the mixture are the solute and
solvent, respectively. The vdW constant a22a2 describes
the attraction of solvent molecules. As a mixture is assumed
to be diluted its packing fraction �, isothermal compressibil-
ity �T�T�, and thermal expansion coefficient �p coincide with
that for pure solvent. Now we write the chemical potential
�1 of solute extracting its ideal gas value at the same density

�1 = �1
� + kBT ln�N1

V
�1

3q1
−1� , �25�

where N1 is the number of solute molecules, � is the de
Broglie wavelength, and q1 is the internal partition function
of a single solute molecule. The last quantity is supposed to
be dependent on temperature only as well as �. The first
term on the right-hand side of Eq. �25� has a sense of the
reversible work required to introduce one solute molecule
into a solvent �37�. The process of introducing the solute is
divided into two steps: the formation of a cavity in the sol-
vent and then the introduction of solute into the cavity. The
former step requires the work against the solute-solvent re-
pulsions whereas the second one is due to interparticle attrac-
tions �31,37,40�. Thus

�1 = �1
HS + �1

at + kBT ln�N1

V
�1

3q1
−1� . �26�

Analogically to the case of the partial pressure �22� the
chemical potential �1

HS of cavity formation is expressed from
the Boublik-Mansoori-Carnahan-Starling-Leland equation of
state for HS mixtures �38,39�

�1
HS

kBT
=

2�
3

�1 − ��3 +
3�
2

�1 − ��2 +
3�
�− 
2 + 
 + 1�

1 − �

+ �− 2
3 + 3
2 − 1�ln�1 − �� . �27�

The explicit form of the attractive contribution is obvious

�1
at = − 2�	3a12kBT . �28�

We use now the thermodynamic relation for the partial vol-
ume v̄1 of solute molecule in solvent v̄1= ���1 /�p�T,N1,N2.
Then we have

v̄1 = 	�
���1

HS/kBT�
��

− 2�	3a12 + 1
kBT�T. �29�

The relation establishes the connection between the cross-
interaction constant a12 and the partial volume v̄1 of solute in
solvent. The latter could be expressed via experimentally
measured parameters. Let us consider the point in more de-
tail.
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It is well known that the volume of mixture V does not
coincide with its additive value xV1+ �1−x�V2, where x is a
mole fraction of component 1; V1 and V2 are the volumes of
pure substances. Their difference

VE = V − xV1 − �1 − x�V2 �30�

is called the excess volume �41�. The parameter characterizes
the property of liquid mixture and might be positive as well
as negative depending on the nature of compounds. It is de-
termined from densitometric measurements. The observed
values of VE are fitted usually by the Redlich-Kister polyno-
mials �41�

VE = x�1 − x��
i=0

g

Ai�1 − 2x�i, �31�

which allows calculation of the coefficients Ai. In general,
the partial volumes v̄1 and v̄2 of components depend non-
trivially on the molar fraction x. However the case of diluted
solution is simpler: the partial volume v̄2 of solvent coincides
with that for pure liquid, v̄2=V2 /N2, whereas the partial vol-
ume v̄1 of solute deviates most of all from its pure liquid
value v1,

v̄1 =
V1 + �V1

N1
= v1 + �v1, �32�

and the “defect” of molar volume �V1 equals to x derivative
of the volume excess �41�

�V1 = � �VE

�x
�

x→0
= �

i=0

g

Ai. �33�

Expressions �30�–�33� complete the determination of vdW
constant a12 via the measured quantities.

We formulated above the approach of evaluation of the
parameters of pure substances and their mixtures like the
hard-sphere diameters d1, d2, and d12 and van der Waals con-
stants a1, a2, and a12. We remind readers that all these quan-
tities are temperature dependent. Therefore, to calculate the
Soret coefficient according to Eqs. �12�, �14�, and �15� the
values of their temperature derivatives are needed. Moreover,
it is necessary to know also �T��T� and ���T�—the tempera-
ture derivatives of solvent compressibility and packing frac-
tion, respectively. There are a number of ways to define the
parameters. First, they can be inferred from the polynomial
fitting to measured values. For example, the compressibility
�T�T� is well described by the polynomial of second order
over the powers T−T0, where T0 is some reference tempera-
ture. Second, it might use the analytical relations for the
derivatives. So, differentiating Eqs. �19� and �29� over T
leads to explicit expressions for a1��T�, a2��T�, and a12� �T�. We
do not quote these formulas due to their evidence and un-
handiness.

VII. CHEMICAL CONTRIBUTION
TO THE SORET EFFECT

Let us revert now to an analysis of general relation �15�
which performs the Soret coefficient via the difference of

compressibility factors Z12 and Z2 of solute and solvent, re-
spectively. According to Eq. �23� it contains the repulsive
and attractive terms. The terms do not include the masses
and the moments of inertia of molecules and thus form the
chemical contribution to the Soret effect �6�. In other words,
the chemical contribution follows from the interparticle in-
teractions. Therefore, the Soret coefficient ST itself proves to
be a result of balance of forces of both types. In the hypo-
thetical binary mixture where molecules have the same size,
d1=d2, and interact via the same interparticle potential, a2
=a12, this balance becomes the complete equality. The Soret
coefficient of such a system is equal to zero because mol-
ecules of both sorts cannot discriminate each other similarly
to the case of ideal gas mixture considered in Sec. IV. In
general, the balance is not complete and one of two physical
mechanisms—repulsion and attraction—prevails.

It would be desirable to understand which sign of ST does
a separate action of repulsive and attractive forces lead to.
The next qualitative picture allows us to imagine the trend of
repulsions. The steric interactions try to push the molecules
out of the more dense �cold� region into warmer layers of
fluid. Particles of both sorts strive to being there and thus
have to compete with each other. The particles with larger
interparticle interactions gain and move indeed to the
warmer region. Obviously, these are the molecules with
larger size. So, the stronger repulsive interactions are respon-
sible for a negative contribution to the Soret coefficient. On
the contrary the attractive interactions lead just to opposite
tendency—they force the particles with stronger interactions
to move toward the cold region �42�. For a solute this takes
place when cross-interaction parameter 	3a12 �see below Eq.
�35�� prevails over interactions a2 of solvent molecules. Thus
the repulsive interactions rival with attractive ones as usual
and the actual magnitude and the sign of the Soret coefficient
depends on the relation between their contributions, ST
=ST

HS+ST
at. It is worth noting that the larger the molecules the

stronger simultaneously both types of interaction �43�. It
means that their balance might be quite a delicate quantity
which is smaller in absolute value than the contributions
taken separately.

The explicit form of both contributions is

ST
HS =

4

n2T
	 ��n2T��	3g12

HS�d12� − g22
HS�d2���

�T



p

, �34�

and

ST
at = −

1

n2T
	 ��n2T��	3a12 − a2��

�T



p

. �35�

We intend now to compare our result with the data of
numerical experiments. There are a lot of publications on the
subject �5,42,44,45�. However, the majority of them are not
unanimous and often contradict each other �44� or the data
quoted are not enough for comparison �42,45�. The best can-
didate for the comparison might be numerical experiments of
the HS mixture because of minimal set of molecular param-
eters governing thermal diffusion in such a system. Unfortu-
nately, the data for the Soret coefficient of the HS mixture
are very rare in the literature �46,47�. The results of Erpen-
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beck �46� were found for HS system with the mass ratio of
components m1 /m2=10 and m1 /m2=33 and thus are not ap-
propriate for our needs. Some data of recent paper �47� have
been obtained for equimolar mixture of hard spheres of equal
masses. To use them we adopted the linear dependence of the
inverse value of the Soret coefficient on the mole fraction
�47�

SHS�x = 1/2� �
2SHS�x = 0�SHS�x = 1�
SHS�x = 0� + SHS�x = 1�

. �36�

The limiting values SHS�x=0� and SHS�x=1� were deter-
mined according to Eq. �34�. The dependence of the thermal
diffusion factor, ST, on the diameter ratio is shown in Fig. 2
for the packing fraction �=0.209. As seen, the theoretical
results are in good agreement with the simulation data. In
Sec. VIII we consider in detail the steric and dispersion con-
tributions to the Soret coefficient for the particular case of
benzene-cyclohexane mixture.

VIII. SORET EFFECT IN BENZENE-CYCLOHEXANE
MIXTURE

In this section we apply the proposed theory for a special
case of benzene-cyclohexane mixture—the standard refer-
ence system for thermodynamic measurements. This is due
to the fact that properties of pure components and the excess
volume of mixture are known with high precision
�36,48–53�. Furthermore, the Soret coefficient of benzene-
cyclohexane system is well determined and reveals a physi-
cally interesting behavior—changing sign at a mole fraction
of benzene x�0.8 �6,54,55�. First we define the properties of
pure substances.

A. Properties of pure liquids

We use the temperature dependence of molar volume
Vm�T� and the isothermal compressibility �T�T� as input pa-
rameters measured in Refs. �36,48� for benzene and cyclo-

hexane, respectively. The hard-sphere diameter d�T�, packing
fraction ��T�, and van der Waals constant a�T� were deter-
mined with the help of Eqs. �18�–�20�. The typical behavior
of two parameters as a function of temperature is shown in
Fig. 1 for the case of cyclohexane. The calculated values of
parameters are given in Table I at T=25 °C. Owing to obvi-
ous similarity of benzene and cyclohexane molecules the pa-
rameters prove to be very close to each other.

Next we found the derivatives ���T�, d��T�, and a��T�.
The defined dependencies d�T�, d��T�, ��T�, and ���T� were
used to calculate the thermal expansion coefficient �p=
−�� ln n /�T�p as a function of T. The comparison of calcu-
lated values �p,calc with the measured ones �p,exp �36� reveals
the very high agreement of both results: the relative devia-
tion �p,calc /�p,exp−1 does not exceed 0.25%. For example,
for cyclohexane at T=60 °C both magnitudes are �p,calc
=1.324�10−3 K−1 and �p,exp=1.327�10−3 K−1. The prop-
erty testifies to the intrinsic self-consistency of the perturba-
tion theory and the van der Waals Eq. �17�. The calculated
values of derivatives taken at T=25 °C are given in Table II.

B. Properties of benzene-cyclohexane mixture

The main input parameter now is a “defect” of molar
volume �V1, i.e., the difference between the partial molar
volume of solute in solvent and its pure liquid value. There is
an extensive bibliography devoted to measuring �V1
�49–53�. In our opinion, the most precise measurements were
fulfilled in Ref. �52� where the values �V1=2.73 cm3 /mol
and �V2=2.56 cm3 /mol have been found at T=25 °C for
infinite dilution of benzene in cyclohexane and cyclohexane
in benzene, respectively. The corresponding vdW constants
a12 and a21 are calculated from Eq. �29�. This way we get the
almost identical estimations a12=27.2 and a21=27.3. They
prove to be noticeably smaller than their mean-geometrical
value amg= �a1a2�1/2=28.2. The decrease in cross-interaction
constant is physically obvious because the volume of mix-
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FIG. 2. Thermal diffusion factor ST as a function of diameter
ratio for equimolar mixture of hard spheres for �=0.209. Diamonds
are the data from Ref. �47�. The line is a result of linear fitting of
1 /S upon extreme points 1 /SHS�x=0� and 1 /SHS�x=1�.

TABLE I. Packing fraction �, hard-sphere diameter d, van der
Waals constant a, thermal expansion coefficient �p, and compress-
ibility �T of pure substances at T=25 °C.

Liquid �
d

�Å� a
�p

�kK−1�
�T

�TPa−1�

C6H6 0.515 5.27 28.0 1.23a 973a

C6H12 0.519 5.64 28.5 1.22b 1131b

aData from Ref. �48�.
bData from Ref. �36�.

TABLE II. Temperature derivatives of packing fraction ��,
hard-sphere diameter d�, van der Waals constant a�, and compress-
ibility �T� of pure substances at T=25 °C.

Liquid
�� /�

�kK−1�
d� /d

�kK−1�
a�

�K−1�
�T� /�T

�kK−1�

C6H6 −1.63 −0.134 −0.117 7.87

C6H12 −1.71 −0.165 −0.128 8.49
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ture is larger than its additive value. The relative variations
in molar volume �V1 /V1 and cross-interaction constant
a12 /amg−1 have close magnitudes.

We describe now the striking property revealed when the
hypothetical benzene-cyclohexane mixture with zero value of
the “defect” of volume is considered. Substituting �V1=0 in
Eq. �29� reduces the cross-interaction constants just to their
mean-geometrical value, a12��V1=0�=a21��V2=0�=amg. We
point out that the equality is satisfied with very high preci-
sion better than 0.06%. It is important that the property is not
specific only for the benzene-cyclohexane mixture. For ex-
ample, adding toluene does not change the property dramati-
cally: it is fulfilled now for toluene-benzene and toluene-
cyclohexane pairs with slightly worse accuracy of 0.09% and
0.25%, respectively. We use the property in Sec. IX where
the simplified relation for the Soret coefficient is given.

It was mentioned above that equation for a12� is obtained
by differentiating Eq. �29� over temperature. The quantity
�V1����V1� /�T is required calculating a12� . The quantity is
not well defined in experiment parameter. Indeed, the major-
ity of works on excess thermodynamic properties of
benzene-cyclohexane system deals with the fixed standard
temperature T=25 °C �see detailed review in Ref. �53��.
The data performed at different temperatures can be found
significantly rarely �49–52,56� and often contradict each
other. The situation is not surprising because the parameter
���V1,2� /�T is the second derivative �see Eq. �33�� of the
hardly measured volume excess VE taken at infinite dilu-
tion of solute. To estimate it we used again the most reliable
data for �V1,2 found in Ref. �52� for four values of
temperature—T=25, 30, 35, and 40 °C. Assuming the
linear dependence �V1�T� we get ���V1� /�T
=0.00483 cm3 K−1 mol−1. We note that the value well cor-
relates to the estimation 0.00382 cm3 K−1 mol−1 given in
Ref. �51� but it is two and half time smaller that the value
0.0115 cm3 K−1 mol−1 which can be deduced from data of
Ref. �56�. Analogically for the case of cyclohexane as a sol-
ute we have ���V2� /�T=0.00387 cm3 K−1 mol−1. It is inter-
esting that it overestimates by 2.5 times the result
0.00184 cm3 K−1 mol−1 of Kumaran and Benson �51� and is
very close to the value 0.00406 cm3 K−1 mol−1 found from
Ref. �56�.

The calculated values of a12� =−0.113 K−1 and a21�
=−0.114 K−1 prove to be very close to each other, but nota-
bly smaller than derivative of the mean-geometrical value
��a1a2�1/2��=−0.123 K−1. All main data for benzene-
cyclohexane mixture are collected in Table III. Substituting
the parameters into Eq. �14� or Eq. �15� yields the Soret
coefficient ST,1=−0.00369 K−1 of benzene in cyclohexane

and the Soret coefficient ST,2=−0.00399 K−1 of cyclohexane
in benzene. We compare them with the results of Wittko and
Köhler �55,57,58� that determined the chemical contribution
from the data measured for the different isotopically substi-
tuted mixtures. Figure 3 shows our result in comparison with
the data �58�. The theoretical curve 2 is a second-order poly-
nomial fit with the same curvature as the “experimental”
curve 1. As seen, the theoretical curve catches the main fea-
tures of the Soret coefficient behavior. They are the change
in sign of ST taking place with the growth of benzene con-
centration and the correct order of magnitude of the effect,
�ST��0.001 K−1. Moreover, the value of the Soret coeffi-
cient ST,1 of benzene in cyclohexane is in reasonable agree-
ment with the experimental result ST,1

exp=−0.00291 K−1. At
the same time, the calculated value of the Soret coefficient of
cyclohexane in benzene overestimates twice its measured
value.

In Table IV we present the values of the Soret coefficient
for diluted benzene/cyclohexane mixtures as well as the
separate contributions of steric and dispersion forces. The
signs of all contributions are in accordance with the qualita-
tive picture considered in Sec. VII. Indeed, the cyclohexane
molecule is larger than the benzene one �see Table I�. Thus
the repulsive interactions constrain the former to move into
the warmer layer. This is why the sign of ST

HS is negative for
the mixture cyclohexane in benzene �mixture II� and positive
for the case of benzene in cyclohexane �mixture I�. The con-
tribution of attractive forces depends on the value of param-
eter 	3a12−a2. Using the data of Table I we find the values
−3.9 and 2.3 for the mixtures I and II, respectively. This
signifies that dispersion forces cause a movement of cyclo-

TABLE III. Defect of molar solute volume �V, cross-interaction
van der Waals constant a, its value at �V=0 and temperature de-
rivatives a� and �V�. All the values are given at T=25 °C.

Mixture
�V

�cm3 /mol� a
a

��v=0�
a�

�K−1�
�V� /�V
�kK−1�

C6H6 �1� in C6H12 �2� 2.73 27.2 28.2 −0.113 1.77

C6H12 �2� in C6H6 �1� 2.56 27.3 28.2 −0.114 1.51
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FIG. 3. �Color online� The chemical contribution to the Soret
coefficient of benzene/cyclohexane at T=25 °C. Line 1 refers to the
data from Ref. �58�. Diamonds are the result of present work. Line
2 is a polynomial fit to the result.

TABLE IV. Repulsive and attractive contributions to the Soret
coefficient ST. All values are given in kK−1 for benzene-
cyclohexane mixtures at T=25 °C.

Mixture ST
HS ST

at ST

C6H6 �1� in C6H12 �2� 8.99 −12.68 −3.69

C6H12 �2� in C6H6 �1� −9.57 5.58 −3.99
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hexane to colder side. It provides the negative sign of ST
at for

mixture I and its positiveness in the case of mixture II. The
absolute values of repulsive and attractive contributions to
the Soret coefficient prove to be 2–3 times higher than its
summary result. This is in accordance with our expectations
mentioned in Sec. VII.

Besides the Soret coefficient our theory reasonably de-
scribes its temperature dependence. The relative deviations
of ST from its reference value ST�25 °C� are shown in Fig. 4
for six different temperatures between 10 and 40 °C. When
plotting the curves we have used the linear fit upon extreme
points x=0 and x=1. The graph renders properly the behav-
ior of ST in experiment �57,58�. We indicate three common
features of theoretical and experimental results. First, all
lines intersect approximately at one point. Second, curves are
arranged in “correct” order—the higher the temperature the
smaller the absolute value of the Soret coefficient of benzene
in benzene/cyclohexane mixture. Finally, curves are arranged
almost equidistantly at any fixed value of mole fraction x.
The quantitative agreement between theory and experiment
data however is worse. The intersection point in Fig. 4 x
=0.33 is shifted to a region of low concentration in compari-
son with result x=0.72 of Ref. �57�. We note that the latter
quantity is a mole fraction of benzene corresponding to the
mole fraction 1−x=0.28 of cyclohexane. The analogous “in-
verse” result takes place in the case of temperature derivative
of the Soret coefficient. So, we find the values 0.021
�10−3 K−2 and 0.043�10−3 K−2 for dST /dT of benzene in
cyclohexane and cyclohexane in benzene, respectively. Cor-
responding experimental data are 0.035�10−3 K−2 and
0.024�10−3 K−2 �57�. There are no doubts that the men-
tioned mismatch is a direct consequence of the doubly over-
estimated value of the Soret coefficient of cyclohexane in
benzene �see Fig. 3�. The possible reasons of the result are
discussed in Sec. IX.

IX. DISCUSSION

We consider now the observation mentioned in paragraph
B of Sec. VIII that in the hypothetical benzene-cyclohexane

mixture with zero value of the “defect” of volume the cross-
interaction vdW constant equals to the mean-geometrical
value, a12��V1=0�=a21��V2=0�=amg. Mathematically, this
can be written in the form similar to Eq. �29�

v1 � 	�
���1

HS/kBT�
��

− 2�	3amg + 1
kBT�T. �37�

We note that the relation is not an identity and it is fulfilled
only approximately. Nevertheless, as we emphasized before,
Eq. �37� is satisfied with very high precision better than
0.06% for benzene/cycloxexane mixture. If we successively
add to the pair of substances first toluene and then hexane,
we could register the growth of inaccuracy of Eq. �37� cor-
respondingly to 0.25% and 2.3%. The last number is compa-
rable in magnitude with the relative value of the defect of
volume �V1 /V1 and should be considered as inappropriate
when using Eq. �37�. The reason behind the growth of inac-
curacy in the series benzene+cyclohexane, +toluene,
+hexane is clear. It is due to an increase of molecule non-
sphericity �59� whereas the theory developed here relates to
the case of spherical solute and solvent particles. Strictly
speaking, our theory and Eq. �37� are applicable or become
unsuitable simultaneously.

With the help of Eq. �37� we can find a very compact
relation for the Soret coefficient. Indeed, let us consider the
hypothetical solute whose molecules possess the same hard-
sphere diameter as the particles of real solute do but differ
from them by the mean-geometrical value amg= �a1a2�1/2 of
cross-interaction constant with solvent. Let Zmg be the com-
pressibility factor of this hypothetical solute. Then adding
and subtracting Zmg from Z12 in Eq. �14� we obtain

ST = ST
mg +

1

n2T
	 ��n2T�Z12 − Zmg��

�T



p

, �38�

where ST
mg is the Soret coefficient of the hypothetical mix-

ture. Substitution of Eqs. �23�, �29�, and �37� and differentia-
tion over temperature finally yield

ST = ST
mg + ST

E = ST
mg −

�V1

2RT�T
	�p +

�T�

�T
−

�V1�

�V1

 . �39�

Therefore the Soret coefficient of solute is composed of two
terms. One of them is the Soret coefficient ST

mg of the hypo-
thetical system; it is determined solely by the properties of
pure liquids. Second term ST

E is owing to excess properties of
mixture. It is interesting that the microscopic parameters
such as the hard-sphere diameters do not enter at all into the
relation for ST

E, which is expressed via the defect of solute
molar volume �V1, its temperature derivative �V1�, and the
solvent properties �T, �T�, and �p.

So, there are different ways to decompose the Soret coef-
ficient. The decomposition in Eqs. �34� and �35� has been
done according to the nature of intermolecular forces. As
seen from Table IV, the repulsive and attractive contributions
prove to be one and the same order. The property is not
typical of only the benzene/cyclohexane system and takes
place in any nonpolar fluids. It means that the decomposition
�Eqs. �34� and �35�� is quite a formal and noninformative
one. A different physical approach is used in Eq. �39�. Both
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FIG. 4. �Color online� The chemical contribution to the Soret
coefficient of benzene/cyclohexane mixture at different tempera-
tures relative to its value at T=25 °C. Curves are linear fit upon
extreme points x=0 and x=1.
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terms entering the equation differ by magnitude of the system
volume. The volume of the hypothetical system is an additive
quantity what is equivalent to zero value of the volume ex-
cess. On the contrary, the second contribution ST

E is propor-
tional to the volume excess �V1 of solute. The contribution
becomes tangible roughly at �V1�1 cm3 /mol correspond-
ing to dimensionless value �V1 /V1,2�1%. In the benzene/
cyclohexane system, the ratio achieves 3% as follows from
the data in Table III and the term ST

E prevails. Indeed, substi-
tuting the parameters of Tables II and III leads to results
ST,1

E =−3.87 kK−1 and ST,2
E =−4.03 kK−1 for benzene in cy-

clohexane and cyclohexane in benzene, respectively. The
values are very close to that calculated for the Soret coeffi-
cient �see the last column of Table IV� implying the negli-
gible contribution of first term in Eq. �39�. In their pioneer-
ing work, Story and Turner �54� were the first who suggested
an important role of volume change mixing in the Soret ef-
fect. As we have demonstrated, an intimate connection of the
Soret coefficient with the mixture excess volume appears in
our approach in natural and transparent way.

Let us summarize the main results of the paper. Using the
representations of Bearman and Kirkwood, we have devel-
oped the theory of thermodiffusion in a molecular nonpolar
liquid mixture. It was assumed that the Soret effect is due to
that part of driving force which is defined solely by the equi-
librium thermodynamic quantities. It has been shown that
modification of the original Bearman-Kirkwood relation for
the driving force is required. The corrected formula was used
to obtain the explicit general relation between the Soret co-
efficient and the partial pressure of one of mixture compo-
nents. The partial pressure and compressibility factor of liq-
uid mixture have been determined within the framework of
perturbation theory where the hard-sphere fluid was chosen
as reference system and dispersion interactions are consid-
ered as perturbation. The hard-sphere diameters and the van
der Waals constants of pure liquids were expressed via mea-
sured quantities—the molar volumes and isothermal com-
pressibilities taken at different temperatures. The solvation
theory has been used to relate the vdW constant of cross
interactions with the volume change on mixing the compo-
nents. This way, two physically different representations for
the chemical contribution to the Soret effect were derived.
The theoretical predictions proved to be in reasonable agree-
ment with the data for benzene-cyclohexane mixture: the cal-
culated values of ST have correct order and change sign at
some fraction of benzene. A quantitative agreement of theo-
retical and experimental results is revealed also for tempera-
ture dependence of the Soret coefficient.

All these properties confirm the main idea of the paper
that the gradient of partial pressure �equilibrium part of the
driving force� is an important mechanism of thermodiffu-
sional motion. The pertinent question is whether the quanti-
tative mismatch of the theoretical predictions and data is a
consequence of another uncharted mechanism or it is a result
of the inevitably approximated character of the theory. Un-
fortunately, an answer lies beyond the scope of the present
work and separate investigation is required. As was men-
tioned, our theory has been developed for the case of spheri-
cal particles. Due to the fast rotational motion, the platelike
benzene and cyclohexane molecules are considered tradition-
ally as quasispherical ones as contrary to alkanes �31–33,43�.
Nevertheless, there is an opposite point of view on benzene
and cyclohexane molecules as nonspherical particles �59�.
We hope to clarify the role of nonsphericity of real molecules
later.

Here we applied the developed theory only for benzene-
cyclohexane system and did not consider any other mixture.
There are a number of reasons for that. First, the benzene-
cyclohexane system is a standard well-studied reference mix-
ture. To calculate the Soret coefficient according to Eq. �39�
it has to know such evasive variables as volume excess �V1
and its temperature derivative �V1�. For majority of mixtures
these parameters are not available or defined inaccurately.
Second, there are only four mixtures where the chemical
contribution to the Soret effect is determined experimentally
�57,58�. Unfortunately, three of them are not appropriate for
comparison because of polar �water, ethanol, dibromohex-
ane� or nonspherical �hexane, dibromohexane� molecules.
The fourth mixture is just the benzene-cyclohexane system.
Finally, the direct comparison with the available data for ST
is meaningless since the chemical contribution often proves
to be of secondary importance in the phenomenon. In fact
there is an additional contribution to the Soret effect which
does not reduce to interparticle interactions and has the dy-
namic nature. The contribution has been observed in isotopic
mixtures and after the paper of Debuschewitz and Köhler �6�
known as isotopic one. In our opinion, this is an unsuccessful
term because the contribution takes place in both isotopic
and nonisotopic mixtures. The isotopic contribution by itself
is the main subject of our next paper.
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